[[Algebraic element]]
# Roots of a minimal polynomial
Let $A$ be a [[K-monoid]] over $\mathbb{K}$ and $a \in A$ be an [[algebraic element]] with [[Algebraic element|minimal polynomial]] $m_{a}(x) \in \mathbb{K}[x]$.
Then $r \in \mathbb{K}$ is a root of $m_{a}(x)$ iff $a-r 1$ is not invertible in $A$.[^2008] #m/thm/falg
> [!missing]- Proof
> #missing/proof
[^2008]: 2008\. [[Sources/@romanAdvancedLinearAlgebra2008|Advanced Linear Algebra]], §18, p. 461
#
---
#state/develop | #lang/en | #SemBr